

Sports, exercise and health science Standard level Paper 2

Tuesday 31 October 2017	(afternoon)
-------------------------	-------------

	Car	ıdida	te se	ssior	1	num	nber	
					Ц			

1 hour 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer one question.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [50 marks].

© International Baccalaureate Organization 2017

8817-6602

Section A

Answer all questions. Answers must be written within the answer boxes provided.

- **1.** A study assessed fat oxidation rate during high intensity interval training (HIIT) in two groups of Norwegian men.
 - Group 1: Recreational participants
 - · Group 2: Trained participants

The recreational participants were active in a variety of sports and the trained participants were regional-level distance runners and national-level orienteers.

The scattergram below shows the relationship between maximal oxygen uptake (VO₂max) and fat oxidation rate during the HIIT for each participant.

[Source: Ken J. Hetlelid, Daniel J. Plews, Eva Herold, Paul B. Laursen and Stephen Seiler (2015) 'Rethinking the role of fat oxidation: substrate utilisation during high-intensity interval training in well-trained and recreationally trained runners.' *BMJ Open Sport & Exercise Medicine*, 1, 0:e000047. doi:10.1136/bmjsem-2015-000047]

(a)		IU	en	ury	y u	ie	gı	ΟU	ıp	VVI	ılıı	u	ie	111	gı	ie	' 1	VC	ا ₂ ا	Ш	ах	V	'ai	ue	35.													ι'.
	• •	• •	• •	• •	•	•			• •	•			•		•		•				•		•			•	 •	 	•	 • •	•	 		•	 •	 	 •	
	٠.				• •	•			٠.	•			•		•		-				•		•				 ٠	 	•	 		 	٠.	•	 •	 	 •	

(Question	1	continued)	
-----------	---	------------	--

((b)	State the fat oxidation rate for the runner with a VO ₂ max of 60 mLkg ⁻¹ min ⁻¹ .	[1]
((c)	Discuss the relationship between VO ₂ max and fat oxidation rate.	[3]
((d)	Outline the importance of using a Physical Activity Readiness Questionnaire (PAR-Q) in study design.	[2]

Turn over

[1]

(Question 1 continued)

Another study compared the effects of two different high intensity interval training (HIIT) methods and one steady-state endurance training method in non-active people following 8 weeks of cycling. Participants were put into three training groups:

Group 1: steady-state endurance training at 70 % VO₂max

State the change in peak power output for Group 3.

- Group 2: HIIT at 70 % VO₂max
- Group 3: HIIT at 100 % VO₂max

The table below shows mean VO₂max (mLkg⁻¹min⁻¹) and mean peak power output (Wkg⁻¹) before and after 8 weeks of training.

	Method of training	Before training	After training
	Group 1	33.6	40.1
VO ₂ max / mLkg ⁻¹ min ⁻¹	Group 2	34.0	40.1
	Group 3	34.3	40.6
D. d	Group 1	11.5	12.4
Peak power output / W kg ⁻¹	Group 2	11.7	12.7
/ VV Kg	Group 3	11.8	12.4

[Source: adapted from Carl Foster *et al.*, 'The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity'. (2015) *Journal of Sports Science and Medicine*, 14, pp. 747–755.]

(f) Deduce the effect of the methods of training on,	
(i) peak power output.	[1]
(ii) VO ₂ max.	[1]

(Question 1 continued)

(9)	Outline two cardiovascular adaptations following steady-state endurance training.	[2]
1.		
2.		
(h)	Explain the variability of maximal oxygen consumption in cycling versus arm ergometry.	[2]

Turn over

2.	(a)	Long bones are one type of bone found in the body. List two other types of bone.	[2]
	1.		
	2.		
	(b)	Outline the function of a ligament in a shoulder joint.	[1]

(Question 2 continued)

The diagram shows an athlete performing a lateral raise.

[Source: © nickp37 www.fotosearch.com]

(i)		Identify one way of monitoring exercise intensity during three minutes of lateral raises.	[1]
(ii))	Analyse the movement of the shoulder joint during the upward phase from Position A to Position B.	[3]

Turn over

-8-

4.	(a)	(i)	Define the concept of <i>transfer</i> .	[1]

(ii) The diagrams show a long jumper at take-off and a triple jumper during the hop phase.

[Source: © International Baccalaureate Organization 2017]

[Source: © International Baccalaureate Organization 2017]

Outline the type of transfer that occurs between a long jumper moving to triple jump as a new event.

(This question continues on the following page)

Turn over

[2]

(Question 4 continued)

(a)	_	Va		_	_	_	 _	_	_	_	_	_	_	_	_	 _	 	_	_	_	_	_	_	_	_	_	_	 _	_	 _	_	_	_	_	_	_					_	_	_	
																																								•				
		٠	٠.		•						٠		 ٠										٠																			٠.		

Section B

Answer **one** question. Answers must be written within the answer boxes provided.

5. Using examples, outline the function of the axial and appendicular skeleton during physical activity. [4] (b) Describe the mechanics of inspiration in the final stages of a cycling race. [5] (c) Explain the relative contributions of the three energy systems during a hockey or soccer match. [6] Explain how characteristics of type IIb muscle fibres could enhance the performance of (d) [5] a sprinter. 6. Describe how cardiovascular drift occurs during a marathon. [5] (a) (b) Outline the process of the sliding filament theory after calcium has been released and until it is pumped back into the sarcoplasmic recticulum. [4] Analyse how rehearsal and organization improve memory in a sporting routine. (c) [5] (d) Evaluate **two** fitness tests used to assess body composition. [6] 7. Describe how a glucose molecule forms a polysaccharide molecule. [4] (a) (b) Distinguish between the skill profile of a javelin throw and a forehand shot in table tennis. [5] (c) Explain the application of Newton's three laws of motion to a swimmer as they start a race from the blocks. [5] (d) Analyse the distribution of blood during maximal exercise. [6]

Turn over

Please **do not** write on this page.

Answers written on this page will not be marked.

